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Abstract

We use the paradigm of diffusing computation, introduced

by Dijkstra and Scholten, to solve a class of graph problems.

We present a detailed solution to the problem of computing

shortest paths from a single vertex to all other vertices, in

the presence of negative cycles.
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1. INTRODUCTION

This paper presents distributed algorithms, based on the work of

Dijkstra and Scholten ( 11, for solving graph problems using networks of

communicating processes. The solution to one particular graph problem -

finding shortest paths from a single vertex to all other vertices in a

weighted, directed graph, in the presence of negative cycles - is discussed

in detail. We then show how this solution may be applied to other graph

problems including depth first search in an undirected graph.

Our model of computation is a network of processes in which processes

commnunicate only by sending and receiving messages; the model is presented

in detail in section 2.

classical [21
We describe the/shortest path problem/and the necessary terminology from

graph theory, in section 3. The distributed algorithm is given in section

4 and its proof in section 5. Applications to other graph problems are

discussed in section 6.

2. MODEL OF A NETWORK OF COMMUNICATING PROCESSES

A process is a sequential program which can commiunicate with other

processes by sending/receiving messages. Two processes P and,Q are said

to be neighbours if they can communicate directly with one another without

having messages go through intermediate processes. We assume that communi-

cation channels are bi-directional: if P can send messages to Q then Q can

send messages to P. A process knows the Identities of its neighbours; other-

wise it is ignorant of the identities of all other processes and of the general

structure of the network.
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We assume a very simple protocol for message communication; this pro-

tocol is equivalent to the one used by Dijkstra and Scholten [ 1 1. Every

process has an input buffer of unbounded length. If process P sends a messagc

to a neighbour process Q, then the message gets appended at the end of the

input buffer of Q after a finite, arbitrary delay. We assume that (1)

messages are not lost or altered during transmission, (2) messages sent from

P to Q arrive at Q's input buffer in the order sent, and (3) two messages

arriving simultaneously at an input buffer are ordered arbitrarily and

appended to the buffer. A process receives a message by removing one from

its input buffer.

The assumption of unbounded length buffers is for ease of exposition.

We show, in section 6, that fur our problem the input buffer length of

process Q can be bounded by the number of neighbours of Q.

3. THE SHORTEST PATH PROBLEM

G - (V,E) is a directed graph in which V is the set of vertices and E

is the set of edges. Edge (v ,v ) has an associated length wij. If edge

(vj~vj) exists then vj is said to be a successor of vi and vi is said to be

a predecessor of vj. It is required to determine lengths of the shortest

paths from a special vertex vI in V to all other vertices in V . Since

some w j's may be negative, a cycle of negative total length (called a

negative cycle) may exist in the graph. If a negative cycle is reachable

that
from vI then all vertices reachable from / negative cycle will have a

shortest path length of -- . Distance of a vertex vi is the length of the

shortest path from v1 to vi and is denoted by Li.

*
We assume familiarity with graph theoretic terms such as path, shortest
path, etc.
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4. A DISTRIBUTED ALGORITHM FOR THE SHORTEST PATH PROBLEM

Consider a network of processes corresponding to graph G; process pi

represents vertex vi, for all i, and p and pj are neighbours if edges

(vi,v1) or (v vi) exist in G. p knows the weight wij for every outgoing

edge (vi, v). However, pi may not know the weights of incoming edges or

the identities of processes other than its neighbours.

Process p1 initiates a computation to determine the lengths of shortest

paths from v1 to all -yertices. In the following, we use vertex vi and

process pI interchangeably when no confusion can result.

4.1 The Structure of the Algorithm

The algorithm works in 2 phases, both of which are initiated by p1.

At the end of phase I, every process pi will have the value of Li , if L -
Li

If for some vertex vi, L - 00 then p1 will not be aware of this fact

at the end of phase I; the goal of phase II is to inform all such pro-

cesses that they are at distances of -

4.2 The Structure of Phase I Computation

4.2.1 Messages used in Phase I

Phase I computation uses two kinds of messdaes:

(1) a length message is a two-tuple (s,p) where p is the identity

of the process sending the message and s is a number. p sends

a length message (s,pi ) to p1 to inform p1 that there is a path

of length a from v1 to v1 in which vi Is the prefinal vertex.

(2) an acknowledgement message or ack has no other data associated

with it. A process pj sends an ack to a process p, in response

to a length message sent by pI" Intuitively, an ack denotes that

the length sent by pi to p1 has been (or will be) taken into

consideration by all processes reachable from p1.
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A process pi 1 1, maintains a local variable d which denotes the

length of the shortest path received so far by pt" Upon receiving a length

s from a predecessor, if s < d, pi sets d to s and in this case it sends a

length message (s + wji pi) to every successor pj* It may seem that ack's

are superfluous. Clearly length messages can be used to compute successively

shorter paths. However, the presence of negative cycles means that this

will be a nonterminating computation. Ack's are used to terminate phase I

computation as described below.

4.2.2 Local data used by a process pt during Phase I

Each process pt uses 3 local variables.

d : This is the shortest length of paths from v1 to v 1

known to this process at this point in the computation;

d - - if no length message has been received.

pred : This is the predecessor from which the length d was received;

this is the prefinal vertex on the shortest path to vi

computed so far. pred is undefined if d or I = 1.

num This is the number of unacknowledged messages, i.e. the

number of messages sent by this process for which no ack

has been received so far. r
4.2.3 Phase I algorithm for process p,, j 1

Initialization

{No length message has been received. There are no unacknowledged

messages}

begin d :m ; pred is undefined; num :- 0 end;
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Upon receiving a length message (spi)

if a < d then

begin

{send an ack to pred, the prefinal vertex on the previous shortest

pathsif it has not been sent already)
if num > 0 then send an ack to pred;

{update d, pred}

pred := PI; d := s;

{send length messages to all successors of v and increment num

appropriately and then return ack to pred if num - 01

send a length message (d + w , p1) to every successorIkPk;

num :- num + the number of successors of v
if num -0 then send an ack to pred

end

else {s > d) {new length does not denote a shorter path)

send ack to p".

Upon receiving an ack from process Pk

begin

{decrement number of unacknowledged messages}

num :- num - 1;

{send acknowledgement to pred if acks have been received for all messages)

if num 0 then send ack to pred

end.

Note:

1. If nun > 0 at any ,time, then a process has exactly one message to

which it has not sent an ack, and this ack should go to pred.
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4.2.4 Initiation of Phase I

Phase I alqorithm for process p,

Initialization

d :- 0; pred is undefined;

send (wlkPl) to all successors Pk; num ;= number of successors of v]

Upon receipt of a length message (s,p )

(start phase II if a negative cycle is detected}

if s < 0 then terminate phase I and start phase II

else return ack to i

Upon receiving an ack

{update num; start phase II if there is no unacknowledged meE

remaining)

num :- num- 1;

if sum - 0 then terminate phase T and start phase II.

4.2.5 Example

Consider the graph shown in figure 1.

3 4

3-42 3

Figure 1.

A network with weighted edges.
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Four feasible snapshots of the network showing possible values for d,

pred and num for the six processes in this example are shown below. Since

transmission delays are arbitrary, network computation is non-deterministic.

Hence the four snapshots shown below form only one of many sequences which

may arise. "?"denotes undefined value for pred.

Snapshot 1

P1 has sent one message to each of P2 and P3 which have not yet been received.

1 2 3 4 5 6

d 0 G 0 0

pred

num 2 0 0 0 0

Snapshot 2

p29p3 have received length messages (3,p1 ),(4,pl) respectively.

P 3 has sent (lO,p 3) to p4 ' which P4 has received.

1 2 3 4 5 6

d 0 3 4 10 0

pred ? 1 1 3 ? ?

num 2 0 1 0 0 0

p5,p 6 receive (llP),(12,P4 ) respectively i ~om P4 . P6 sends an

ack to P4 ; this ack is received by P4.

receives (5 Next P4 sends an ack to p3 and sends (6, (7

to P5 and P6 respectively which they both receive. "5 sends an

ack to P4 which is received by P4.
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2 3 4 5 6

d 0 3 4 5 6 7 J
pred ? 1 1 2 4 4

num 2 1 0 2 0 0

Snapshot 4

P3 sends an ack to P1 since P3 's num is zero.

p5 sends (2,p5 ) to P2' thus causing p, to send an ack to P1. Since

P1 has no further unacknowledged messages it terminates phase T.

1 2 3 4 5 6

d 0 2 4 5 6 7

pred ? 5 1 2 4 4

num 0 1 0 2 1 0

4.3 The Structure of Phase IlComputation

4.3.1 Messages used in Phase I1

Phase Ilemploys two kinds of messages: over? and over- . An over-

message is sent by process j to all its successors if process j has

determined that phase T is over and Lj M - D ; an over- message orders

the recipient to halt all phase I computation (if it has not done so

already), set its d to - and propagate the over- message to its successors.

If a process already has its d - - when it receives an over- message,

it takes no action. An over? message is sent by process I to all its

successors when it has determined that phase I is over, but has not

determined whether L - - . An over? message orders the recipient to
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halt all phase I computation. If the recipient p1 has num 0 it sends over?

messages to its successors; otherwise (if p1 bo num > 0) It can be shown

that Li - - , therefore p, sets its d : - a .,nd sends over- to its successors.

Note that it is redundant for any proce..4 p to send duplicate messages to a

process pj or to send over? after over- • Every process other than p, will receive

an over? or an over- message.

4.3.2 Detailed algorithm for Phase 1I

Initiation of Phase Ilby process p1

if p1 receives a message (s,p), with s < 0, during 
phase I

then (p1 detects that it is in a negative cycle)

send an over- message to all its successors

else {num - 0 for PIat the end of phase I

send over? message to all successors

Phase II algorithm for process p1 with num > 0

Upon receiving a phase Ilmessage (over- or over?)

if d # - then

begind := -

send over- to all successors

end

Phase II algorithm for process pj with num= 0

Upon receiving an over- message

if d 0 - - then

begin d : -- ;

send over- to all successors

end.

Upon receiving an over? message

if d 0 - e then send over? to all successors.



10

5. PROOF OF CORRECTNESS

We define v i to be a finite vertex if Li 0 -w; v i is an infinite

vertex if L = -

Lema I : For any J, L1 < d at all times.

Proof : We observe that every d3 is the length of some path from v1 to V .

Lemma 2 : If there is a finite path of length d to a vertex v then

from some point onward in the computation d < d , if Phase I does not

terminate.

Proof : Proof is by induction on the number of edges on the path. Lemma 2

is trivial when the number of edges in the path is zero. Now assume Lemma 2

holds for all paths with k or fewer edges. Consider a path with k + 1 edges

from v1 to v in which vi is the prefinal vertex and the path length to v

is d i d - w J. From the induction hypothesis eventually, d, L d,

d - w j; therefore p will eventually receive (dI + w j, pi) which guaran-

tees that d < d + vj < d . It follows from the algorithm that d can

never increase. Therefore, d d from that point onward in the computatior. F

Lema 3 : If phase I does not terminate then from some point onward in

the computation every infinite vertex v3 will have an infinite vertex for

pred and every finite vertex v1 wil have a finite vertex for pred 3 j 1.

Proof : The following holds for all J, J 0 1, at all times:

di + wvj < dj if i - predJ.

From lemma 1, L1 < di , for all i. Therefore,

Li + Wvj d, if I - predJ,
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If v is infinite then from lemma 2, eventually d gets arbitrarily small.

In particular, from some point onwards in the computation, for every finite vi,

dj L ii

Hence from that point onwards predj will be an infinite vertex.

From lemmas 1 and 2, if phase I does not terminate then eventually every

finite vi will have di M Li and predi will be the prefinal vertex on this

path; predi must therefore be a finite vertex.

Theorem 1 : Phase I terminates.

Proof : Assume phase I never terminates. Then d - L for every finite vertex

v from some point in phase I computation and hence no finite vertex sends

a length message from then on. From lemma 3, finite vertices eventually

form a rooted directed tree where pred is the father of vi, J 0 1, and v1

is the root. A leaf vertex vi, j 0 1, in this tree cannot be the pred for

any finite vertex (since it is a tree) nor can it be the pred for any infinite

vertex, from lemma 3 ; therefore eventually num = 0 and v will send an

ack to predJ . Induct on the height of the tree to show that every finite

vertex will eventually have num = 0. If p1 is a finite vertex it will then

terminate phase I computation. If p1 is an infinite vertex, from lemma 2, it

will eventually detect that it is in a negative cycle and hence terminate

phase I. Hence phase I will terminate! Contradiction!

Theorem 2 : At the termination of Phase I,

(1) if v1 is a finite vertex, dj - L and num - 0.
and thdn only

(2) if vj is an infinite vertex, then/there is some vt such that there

is a path from v1 to v1 through v,, in the graph, and numi > 0.
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Proof

(1) For a finite vertex v,, we define e(j) to be the number of edges

on a shortest path from v to V (if there are several shortest paths we

choose the Abortest loopfree path with maximum number of edges). The

result follows by induction on e(j).

(2) Assume the contrary that for an infinite vertex vj, every vertex

vi on a path from v1 to vj has num1 = 0, at the end of Phase I. Even if

phase I computation continues, v will never receive a length message and

thus d will not decrease. This contradicts lemma 2. The other part of the

proof follows by similar arguements.
Theorem 3 : Phase II terminates and at that point d L for every vertex

v .

Proof : Phase I terminates since any process sends at most 2 messages

over? followed by a over- message. No finite vertex receives a over- message

because there cannot be an infinite vertex on a path from v1 to a finite

vertex. Therefore d remains unchanged during Phase II for a finite vertex

and from theorem 2, d - L at the beginning of Phase II. For an infinite

vertex vj, there is a path from v1 to vj through vi, where numi > 0 at the

end of Phase I. Therefore pi will propagate an over- message once it receives

any Phase II message and therefore d = - = L eventually.

jj

6. NOTES ON THE ALGORITHM

6.1 Unbounded Buffers

A process pi sends (strictly) monotone decreasing lengths in every length

message to any other process pj. Therefore any length message sent by pl

can overwrite any earlier message sent by pi which is still in the buffer. Hence

p need only store one message (the latest message) from each predecessor.

The space requirement for acks can be reduced by storing the number of acks
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sent from pj to PV, which are still in the buffer; this number is incremented

by 1 each time p3 sends an ack to pi" Pi can remove multiple acks from the

buffer and reduce numi accordingly. Hence we need space for at most one

message and one ack count for every neighbour of a process p3 in the input

buffer of p3.

6.2 Applications to Other Graph Problems

A number of other graph problems can be formulated as shortest path

problems using a more general notion of path length. We define a path length

function f, a real valued function on paths, starting from v., as follows.

fipath with no edges] - 0

f(Pi;(i'i)] = gi(fi),w i)

where P is any path from vI to V

P ;(IJ) is the path Pi followed by edge (viov

g is any arbitrary computable function which is

monotone in the first argument,

wij is some given real number denoting the "length" of

edge (vivj)*

The shortest path algorithm of section 4 can be used to compute,

dj . min{f(P) fPj is a path from vl to v }, for all J.

The only change is in Phase I computation in the content of the length

message sent; instead of p1 sending (d1 + Wjk, Pj) to a successor Pk' it now

sends (gj(djwjk), pJ)). Monotonicity of g in the first argument is essen-

tial, since it guarantees that every process sends monotone decreasing path

lengths, if it receives monotone decreasing path lengths.
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We list some graph problems and show how they can be solved under this

shortest path formulation.

1. Find all vertices reachable from vi We wish: to set d to 0 if v

is reachable from vi, else set d~ to -. We use the following function,

g (X.Y) = X

2. Find all vertices which can reach v1  same as (1), except length messages

are sent to predecessors.

3. Maximum strongly connected component: Determine if a given vertex v1

is in a nontrivial strongly connected component : use both (1) and (2).

A separate computation ix then needed to determine whether there is a

vertex which has its d set to 0 in both computations.

4. Construction of Depth First Search Tree :Consider an undirected graph

G. For each vertex j label all the edges incident on j with 1,2,3,.

In a depth-first search we would normally label the "left-most" edge

on j with 1, the next left-most edge 2 and so on. (However, for purposes

of proof the labelling is arbitrary.) Note that edge (ij) may be the

r-th left-most edge incident on i and the s-th left-most edge Incident

on j and it is not necessary that r - s. An example is shown below.

1I .~~de(,4 a ae

at vertex1

2
11 2

I 3-'--edge (1,4) has label 3

3 at vertex 4

Figure 2. An undirected graph with labelled edges:
an application of depth first search.
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In a depth-first search starting from a vertex (say vertex 1), the

vertices of the graph are traversed beginning with a depth-first search

of the left-most successor of vertex 1. The collection of paths traversed

to reach each vertex for the first time forms a tree called the depth-first

search tree. In the above example the depth-first search tree has edges

(1,2),(2,3) and (3,4). Our goal is to determine the depth-first search

tree; in particular we want to determine the path leading to every

vertex in the depth-first search tree.

Let P be a path (il,..,ik). Thendefine f(P) (j ....1 k- ) where ,ms-l,.. k-1,

is the label assigned to edge (im,i ) at vertex i . In our example, if
m n$1 m

P = (1,2,3,4) then f(P) = (1,1,2).

Let f(P) = (j",..,Jm) and f(P') = (k1,..,k). We define f(P) f(P')

if and only if either

(i) for some r, J < k and J= = ki for i=l,..,r-I

or

(ii) n > m and J, = k, for i=l,..,m,

Thus (1,1,2) < (3) and (1) < (1,1,2,2)

It is evident that d - min~f(P ) IP is a path from v1 to v

denotes the path in the depth first search tree up to vj.

6.3 Earlier Work

The algorithm suggested in this paper is a modification of an algorithm

proposed by Dijkstra and Scholten [ 11, for termination detection of a classi

of distributed computations, called diffusing computations. In their algorithm

pred does not change as long as num > 0; "he algorithm terminates when

numj - 0 for every pJ. We allow pred to change while num > 0; this allows

us to terminate the phase I algorithm even when some numj> 0. This is
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critical for identifying infinite ,rtices since those are the ones which

are reachable from a vertex with num > 0.
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